These Notes are to <u>SUPPLEMENT</u> the Text, They do NOT Replace reading the Text Material. Additional material that is in the Text will be on your tests! To get the most information, <u>READ THE</u> <u>CHAPTER</u> prior to the Lecture, bring in these lecture notes and make comments on these notes. These notes alone are NOT enough to pass any test! The author is not responsible for errors in these notes.

Chapter 7 The Structure of Atoms and Periodic Trends

Chemistry of the Sun Fraunhofer Lines are the dark lines present in the visible spectrum of the sun due to absorption of sunlight by elements in the outer layers of the sun.

Sapphires are aluminum oxide crystals with traces of iron and titanium

Rubies are aluminum oxide crystals with traces of Cr³⁺

Pauli Exclusion Principal: no more than two electrons can occupy the same orbital, and if there are two electrons in the same orbital, they must have opposite spins.

Note: The quantum numbers n, l, m_l, m_s are further discussed and used below. Different electrons in an element must have different quantum numbers; else they are the same electron.

Electron Shell (n)	Subshells Available	Orbitals Available (2ℓ + 1)	Number of Electrons Possible in Subshell [2(2ℓ + 1)]	Maximum Electrons Possible fo <i>n</i> th Shell (2 <i>n</i> ²)
1	S	1	2	2
2	5	1	2	8
	p	3	6	
3	S	1	2	18
	p	3	6	
	d	5	10	
4	S	1	2	32
	p	3	6	
	d	5	10	
	f	7	14	
5	S	1	2	50
	p	3	6	
	d	5	10	
	f	7	14	
	g *	9	18	
6	S	1	2	72
	p	3	6	
	d	5	10	
	f^{\star}	7	14	
	<i>g</i> *	9	18	
	h*	11	22	

Не	2 electrons in the 1s orbita	$ \begin{array}{ll} n = 1, l = 0, m_l = 0, \\ n = 1, l = 0, m_l = 0, \end{array} $	$m_s = +1/2$ $m_s = -1/2$	<u>↑↓</u> 1s
p subs d subs	shell can hold 2 electrons shell can hold 6 electrons shell can hold 10 electrons hell can hold 14 electrons	l 0 -1 0 +1 -2 -1 0 +1 +2 -3 -2 -1 0 +1 +2	$\begin{array}{c} \uparrow \downarrow \\ \downarrow \downarrow \downarrow \\ \downarrow \downarrow \downarrow \downarrow \\ \downarrow \downarrow$	↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓

We fill the electrons in order of shells, s then p then d then f. But, there are some cases where an s shell will fill prior to a d or f due to energy content. The Aufbau principal is used to fill the electron shells as we build the periodic table. It is based on subshell energies.

Η

Effective Nuclear Charge Z^{*} is the net charge experience by a particular electron in a multielectron atom resulting from a balance of attractive force of the nucleus and the repulsive force of other electrons.

Lithium, atomic number 3 has $1s^2 2s^1$ electron configuration. The $2s^1$ at a distance from the nucleus will see a net +1 charge. The $1s^2$ will block two of the +1 nuclear charges. Since the $2s^1$ can penetrate some of the area occupied by the $1s^2$ electrons, the $2s^1$ will see more of a positive charge.

The Li 2s¹ will experience a higher net + charge, a value of +1.28 Effective Nuclear Charge. The effective nuclear charge experienced by electrons in a multi-electron atom is s > p > d > f.

George W.J. Kenney, Jr.

7.3 Electron Configuration of Atoms

Electrons are assigned to orbital's in order of increasing n.

Z	Element	Configuration	Z	Element	Configuration	Z	Element	Configuration
1	н	15 ¹	37	Rb	[Kr]5s ¹	74	W	[Xe]4f ¹⁴ 5d ⁴ 6s ²
2	He	15 ²	38	Sr	[Kr]5s ²	75	Re	[Xe]4f ¹⁴ 5d ⁵ 6s ²
3	Li	[He]2s ¹	39	Y	[Kr]4d ¹ 5s ²	76	Os	[Xe]4f ¹⁴ 5d ⁶ 6s ²
4	Be	[He]2s ²	40	Zr	[Kr]4d ² 5s ²	77	Ir	[Xe]4f ¹⁴ 5d ⁷ 6s ²
5	В	[He]2s ² 2p ¹	41	Nb	[Kr]4d ⁴ 5s ¹	78	Pt	[Xe]4f ¹⁴ 5d ⁹ 6s ¹
6	С	[He]2s ² 2p ²	42	Мо	[Kr]4d ⁶ 5s ¹	79	Au	[Xe]4f ¹⁴ 5d ¹⁰ 6s ¹
7	N	[He]2s ² 2p ³	43	Тс	[Kr]4d ⁵ 5s ²	80	Hg	[Xe]4f ¹⁴ 5d ¹⁰ 6s ²
8	0	[He]2s ² 2p ⁴	44	Ru	[Kr]4d ⁷ 5s ¹	81	τι	[Xe]4f ¹⁴ 5d ¹⁰ 6s ² 6p ¹
9	F	[He]2s ² 2p ⁵	45	Rh	[Kr]4d ⁸ 5s ¹	82	Pb	[Xe]4f ¹⁴ 5d ¹⁰ 6s ² 6p ²
10	Ne	[He]2s ² 2p ⁶	46	Pd	[Kr]4d ¹⁰	83	Bi	[Xe]4f ¹⁴ 5d ¹⁰ 6s ² 6p ³
11	Na	[Ne]3s ¹	47	Ag	[Kr]4d ¹⁰ 5s ¹	84	Po	[Xe]4f ¹⁴ 5d ¹⁰ 6s ² 6p ⁴
12	Mg	[Ne]3s ²	48	Cd	[Kr]4d ¹⁰ 5s ²	85	At	[Xe]4f ¹⁴ 5d ¹⁰ 6s ² 6p ⁵
13	AL	[Ne]3s ² 3p ¹	49	In	[Kr]4d ¹⁰ 5s ² 5p ¹	86	Rn	[Xe]4f ¹⁴ 5d ¹⁰ 6s ² 6p ⁴
14	Si	[Ne]3s ² 3p ²	50	Sn	[Kr]4d ¹⁰ 5s ² 5p ²	87	Fr	[Rn]7s1
15	Р	[Ne]3s ² 3p ³	51	Sb	[Kr]4d ¹⁰ 5s ² 5p ³	88	Ra	[Rn]7s ²
16	S	[Ne]3s ² 3p ⁴	52	Te	[Kr]4d ¹⁰ 5s ² 5p ⁴	89	Ac	[Rn]6d ¹ 7s ²
17	α	[Ne]3s ² 3p ⁵	53	I	[Kr]4d ¹⁰ 5s ² 5p ⁵	90	Th	[Rn]6d ² 7s ²
18	Ar	[Ne]3s ² 3p ⁶	54	Xe	[Kr]4d ¹⁰ 5s ² 5p ⁶	91	Pa	[Rn]5f ² 6d ¹ 7s ²
19	K	[Ar]4s ¹	55	Cs	[Xe]6s ¹	92	U	[Rn]5f ³ 6d ¹ 7s ²
20	Ca	$[Ar]4s^2$	56	Ba	[Xe]6s²	93	Np	[Rn]5f ⁴ 6d ¹ 7s ²
21	Sc	[Ar]3d ¹ 4s ²	57	La	[Xe]5d ¹ 6s ²	94	Pu	[Rn]5f ⁶ 7s ²
22	Ti	[Ar]3d ² 4s ²	58	Ce	[Xe]4f ¹ 5d ¹ 6s ²	95	Am	[Rn]5f ⁷ 7s ²
23	v	[Ar]3d ³ 4s ²	59	Pr	[Xe]4f ³ 6s ²	96	Cm	[Rn]5f ⁷ 6d ¹ 7s ²
24	Cr	[Ar]3d ⁵ 4s ¹	60	Nd	[Xe]4f ⁴ 6s ²	97	Bk	[Rn]5f ⁹ 7s ²
25	Mn	[Ar]3d ⁵ 4s ²	61	Pm	[Xe]4f ⁵ 6s ²	98	Ct	[Rn]5f ¹⁰ 7s ²
26	Fe	[Ar]3d ⁶ 4s ²	62	Sm	[Xe]4f ⁶ 6s ²	99	Es	[Rn]5f ¹¹ 7s ²
27	Со	$[Ar]3d^{7}4s^{2}$	63	Eu	[Xe]4f ² 6s ²	100	Fm	[Rn]5f ¹² 7s ²
28	Ni	[Ar]3d ⁸ 4s ²	64	Gd	[Xe]4f ² 5d ¹ 6s ²	101	Md	[Rn]5f ¹³ 7s ²
29	Cu	[Ar]3d ¹⁰ 4s ¹	65	ть	[Xe]4f ⁹ 6s ²	102	No	[Rn]5f ¹⁴ /s ²
30	Zn	[Ar]3d ¹⁰ 4s ²	66	Dy	[Xe]4f ¹⁰ 6s ²	103	Lr	[Rn]5f ¹⁴ 6d ¹ 7s ²
31	Ga	[Ar]3d ¹⁰ 4s ² 4p ¹	67	Но	[Xe]4f ¹¹ 6s ²	104	Rf	[Rn]5f ¹⁴ 6d ² 7s ²
32	Ge	[Ar]3d ¹⁰ 4s ² 4p ²	68	Er	[Xe]4f ¹² 6s ²	105	Db	[Rn]5f ¹⁴ 6d ³ 7s ²
33	As	[Ar]3d ¹⁰ 4s ² 4p ³	69	Tm	[Xe]4f ¹³ 6s ²	106	Sg	[Rn]5f ¹⁴ 6d ⁴ /s ²
34	Se	[Ar]3d ¹⁰ 4s ² 4p ⁴	70	Yb	[Xe]4f ¹⁴ 6s ²	107	Bh	[Rn]5f ¹⁴ 6d ⁵ 7s ²
35	Br	[Ar]3d ¹⁰ 4s ² 4p ⁵	71	Lu	[Xe]4f ¹⁴ 5d ¹ 6s ²	108	Hs	[Rn]5f ¹⁴ 6d ⁶ 7s ²
36	Kr	[Ar]3d ¹⁰ 4s ² 4p ⁶	72	Hf	[Xe]4f ¹⁴ 5d ² 6s ²	109	Mt	[Rn]5f ¹⁴ 6d ⁷ 7s ²
			73	Та	[Xe]4f ¹⁴ 5d ³ 6s ²			

Electron Configuration using Orbital and spdf notation:

H He	1 electron in the 1s orbital 2 electrons in the 1s orbital	1 proton, 1 e-	<u>↑</u> <u>↑↓</u>	1S ¹
пе	2 electrons in the 1s orbital	2 proton, 2 e-	<u> v</u>	18^{2}
			15	

 $1s^1$ - The first 1 is the electron shell (n), s is the orbital type (l), and upper shift 1 or 2 is the number of electrons in that orbital.

Period 1

Н	1S ¹			↑						
				⊥ ↑↓						
Не	$1S^{2}$			<u> </u>						
Perio	o d 2 is	based	on Hel	ium [He]						
Li	$1S^2$	$2S^1$		<u>↑↓</u>	<u>↑</u> <u>↑↓</u>					[He] 2s ¹
Ве	$1S^2$	$2S^{2}$		<u>↑↓</u>	<u>↑↓</u>	_	_			[He] 28 ²
В	$1S^2$	$2S^{2}$	2p1	<u>↑↓</u>	<u>↑↓</u> ↑	<u>↑</u>	_			[He] 2s² 2p1
В	$1S^{2}$	$2S^{2}$	2p1	<u>↑↓</u> <u>↑↓</u>	↑	<u>↑</u>	\uparrow			[He] $2s^1 2p^2$
~ *					- •			_		_
$C^{*_{2}}$	$1S^{2}$	$2S^{2}$	$2p^2$	<u>↑↓</u> <u>↑↓</u>	<u>↑↓</u> ↑	<u>↑</u>	<u>↑</u> 1	-		[He] 2s ² 2p ²
$C^{*_{2}}$	$1S^{2}$	$2S^{2}$	2p ²	<u>T↓</u>	<u>↑</u>	<u>1</u>	<u>1</u>	$\overline{\uparrow}$		[He] 2s ¹ 2p ³
Ν	$1S^2$	$2S^{2}$	2p3	¢↓	↑↓	↑	↑	↑		[He] 2s² 2p³
0	1S ²	-2^{2}	-р 2р4	<u>↑↓</u> <u>↑↓</u> <u>↑↓</u>		<u>↑</u> ↑↓	↑ ↑ ↓	↑ ↑ ↑↓		[He] $2s^2 2p^4$
F	15 ²	2 S ²	-р 2р5	\uparrow	<u>⊥</u> ↑	<u>⊥</u> ↑	Ť↓	Ť		[He] 2s ² 2p ⁵
Ne ^{*1}	15 1S ²	$\frac{25}{28^2}$	2p ⁶	<u>⊥▼</u> ↑1	<u>⊥¥</u> ↑1	<u>↑↓</u> ↑↓	$\frac{1}{1}$	Ťι		[He] $2s^2 2p^6$ [He] $2s^2 2p^6$
					<u>1 ¥</u>	<u>1 w</u>	<u>1 ¥</u>	<u>1 w</u>		[110] 28- 2p*
Perio	o d 3 is	based	on Nec	on [Ne]						
Na	$1S^{2}$	$2S^{2}$	2p ⁶	$3s^1$ $\uparrow\downarrow$	<u>↑↓</u>	<u>↑↓</u>	<u>↑↓</u>	<u>↑↓</u>	<u>↑</u>	[Ne] 3s ¹
				18	28	2p _x	2p y	2pz	3s	NGC ^{*1}
						_		-		

Neon has all of the electrons in the 2 orbital filled, it is called the **Noble Gas Configuration**^{*1} When starting a new electron shell, we can start with the noble gas configuration of the previous. These electrons, expressed as the noble gas configuration are the **core electrons**

***2** Hund's rule states the most stable arrangements of electrons is that with the maximum number of unpaired electrons, all with the same spin.

Electrons beyond the core electrons are the **valence electrons**. The **valence electrons** are the ones that determine the **chemical properties** of an element.

Ne	18² 28² 2p ⁶		<u>↑↓</u> <u>↑↓</u>	<u>↑↓ ↑↓ ↑↓</u>				[He] 2s ² 2p ⁶
Perio Na Mg	$\begin{array}{c} \textbf{bd 3} \\ 1s^2 & 2s^2 & 2p^6 \\ 1s^2 & 2s^2 & 2p^6 \end{array}$	-		<u>↑↓</u> <u>↑↓</u> <u>↑↓</u> <u>↑↓</u> <u>↑↓</u> <u>↑↓</u>	<u>↑</u> ↑↓	_	 	[Ne] 3s ¹ [Ne] 3s ²
Al Al	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	${3s^2\ 3p^1}\ {3s^2\ 3p^1}$	$\begin{array}{c} \uparrow \downarrow \\ \uparrow \downarrow \\ \uparrow \downarrow \\ \uparrow \downarrow \end{array} \begin{array}{c} \uparrow \downarrow \\ \uparrow \downarrow \\ \uparrow \downarrow \end{array}$	$\begin{array}{c} \uparrow\downarrow \uparrow\downarrow \uparrow\downarrow \uparrow\downarrow \\ \uparrow\downarrow \uparrow\downarrow \uparrow\downarrow \\ \uparrow\downarrow \downarrow \downarrow \end{array}$	<u>↑↓</u> ↑	<u>↑</u> <u>↑</u>	<u>↑</u> _	[Ne] 3s² 3p¹ [Ne] 3s¹ 3p²
Si*2 Si*2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3s² 3p² 3s² 3p²	$\begin{array}{c}\uparrow\downarrow\\\uparrow\downarrow\\\uparrow\downarrow\end{array}\begin{array}{c}\uparrow\downarrow\\\uparrow\downarrow\end{array}$	$\begin{array}{c} \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \\ \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \\ \uparrow \downarrow \\ \end{array}$	<u>↑↓</u> ↑	<u>↑</u> <u>↑</u>	$\stackrel{\uparrow}{\uparrow} \overline{\uparrow}$	[Ne] 3s² 3p² [Ne] 3s¹ 3p³
P Georg	1s² 2s² 2p ⁶ je W.J. Kenney,		<u>↑↓</u> <u>↑↓</u>	$\frac{\uparrow\downarrow}{Page 6 of 12}$	<u>↑↓</u>	<u>↑</u>	<u>↑</u> <u>↑</u> 28-Oct-13	[Ne] 3s² 3p³ Chapter 7

S	1s² 2s² 2p ⁶				<u>↑↓</u>	<u>↑↓ ↑ ↑</u>	[Ne] 3s ² 3p ⁴
Cl	$1S^2 \ 2S^2 \ 2p^6$				<u>↑↓</u>	<u>↑↓ ↑↓ ↑</u>	[Ne] 3s² 3p ⁵
Ar	$1S^2 \ 2S^2 \ 2p^6$	$3s^2$ $3p^6$	<u>↑↓ ↑↓</u>	<u>↑↓ ↑↓ ↑↓</u>	<u>↑↓</u>	<u>↑↓ ↑↓ ↑↓</u>	[Ne] 3s² 3p ⁶
			1S 2S	$2p_x 2p_y 2p_z$	3s	3p _x 3p _y 3p _z	NGC ^{*1}

Period 4 will first fill the 4s shell for K and Ca. It will then skip the 4p subshell and start filling the 4d subshell (See Aufbau Principle) for the transition elements and then the 4p.

Filling the **4d subshell**, the elements are called the **Transition Elements** Filling the **4f subshell**, the elements are called the **Lanthanides** Filling the **5f subshell**, the elements are called the **Actinides**

Period 4

K Ca Sc Ti V Cr Cr Cr Cr Mn Fe Co Ni	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \uparrow \downarrow \\ \downarrow \downarrow \downarrow \\ \downarrow \downarrow \downarrow \downarrow \\ \downarrow \downarrow$	$\begin{bmatrix} Ar \end{bmatrix} 4s^{1} \\ \begin{bmatrix} Ar \end{bmatrix} 4s^{2} 3d^{1} \\ \begin{bmatrix} Ar \end{bmatrix} 4s^{2} 3d^{2} \\ \begin{bmatrix} Ar \end{bmatrix} 4s^{2} 3d^{3} \\ \begin{bmatrix} Ar \end{bmatrix} 4s^{2} 3d^{4} \\ \begin{bmatrix} Ar \end{bmatrix} 4s^{1} 3d^{5} \\ \begin{bmatrix} Ar \end{bmatrix} 4s^{2} 3d^{5} \\ \begin{bmatrix} Ar \end{bmatrix} 4s^{2} 3d^{5} \\ \begin{bmatrix} Ar \end{bmatrix} 4s^{2} 3d^{6} \\ \begin{bmatrix} Ar \end{bmatrix} 4s^{2} 3d^{7} \\ \begin{bmatrix} Ar \end{bmatrix} 4s^{2} 3d^{8} \\ \end{bmatrix}$
Cu Cu	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[Ar] 4s ² 3d ⁹ [Ar] 4s ¹ 3d ¹⁰
Zn Ga As Se Br Kr	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Orbital Energies, Z* and Electron Configuration

The above plot of atomic number vs orbital energies shows:

- Going left to right across a period, the atomic orbital decreases in size
- The Orbital Energy decreases

7.4 Electron Configuration of Ions

Chemistry deals with the chemistry of Anions and Cations. Electrons are always removed first from the electron shell of the highest n.

Na: $[1s^2 2s^2 2p^6 3s^1] \rightarrow Na^+ [1s^2 2s^2 2p^6] + 1e^-$

Ge: $[Ar] 3d^{10} 4s^2 4p^2 \rightarrow Ge^{2+} [Ar] 3d^{10} 4s^2 + 2e^{-1}$

Note in these Transition elements, the ns electrons are lost first:

	Ti: [Ar] 3d ¹⁰ 4s ²	\rightarrow Ge ²⁺ [Ar] 3d ¹⁰ + 2 e-
Fe \rightarrow Fe ²⁺	Fe: [Ar] 3d ⁶ 4s ²	\rightarrow Fe ²⁺ [Ar] 3d ⁶ + 2 e-
$Fe^{2+} \rightarrow Fe^{3+}$	${ m Fe}^{_{2+}}$ [Ar] $3d^6$	\rightarrow Fe ³⁺ [Ar] 3d ⁵ + 2 e-

Example 7.4 Give the electron configuration for Cu, Cu⁺, Cu²⁺ and determine which is paramagnetic? (has unpaired electrons and are attracted to a magnet)

$Cu 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^9$	<u>↑↓</u>	$\underbrace{\uparrow\downarrow} \underbrace{\uparrow\downarrow} \underbrace{\uparrow\downarrow} \underbrace{\uparrow\downarrow} \underbrace{\uparrow\downarrow} \underbrace{\uparrow}$	[Ar] 4s ² 3d ⁹
$Cu^+ 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^9$	<u>↑↓</u>	$\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow _$	$[Ar] 4S^2$
$Cu^{2+} \ 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 4s^2 \ 3d^9$	<u> </u>	<u> </u>	[Ar] 4s ² 3d ⁹

Cu²⁺ has one unpaired electron, so it is paramagnetic.

7.5 Atomic Properties and the Periodic Trend

Atomic Size: The atomic size of an element is usually determined by $\frac{1}{2}$ the distance between two elements together (Cl₂, Crystal Structures, etc). They are not determined from distances of ionic compounds!

For the main group elements:

The atomic radius increases going down a group

The atomic radius decreases going across a period $(L \rightarrow R)$.

The effective nuclear charge, Z*, increases going across a period.

For the Transition metal elements:

Going L -> R, the radii initially decrease, then change very little, then a small increase in size

Ionization Energy (IE) is the energy required to remove an electron from an atom in the gas phase

Atom ground state (g) \rightarrow Atom * (g) + e- ΔU = Ionization Energy, IE **First IE** IE1 = 738 kJ/mole $Mg_{(g)}$ \rightarrow $Mg^{+}(g) + e^{-}$ 1S² 2S² 2p⁶ 3S² 1S² 2S² 2p⁶ 3S¹ Second IE Mg⁺(g) IE1 = 1451 kJ/mole \rightarrow $Mg^{2+}(g) + e^{-}$ 1S² 2S² 2p⁶ 3S² $1S^2 \ 2S^2 \ 2p^6$ Third IE $Mg^{2+}(g)$ \rightarrow $Mg^{3+}(g) + e^{-}$ IE1 = 7732 kJ/mole $1S^2 2S^2 2p^6$ $1S^2 \ 2S^2 \ 2D^5$

Each subsequent e- removed after the first requires more energy because an e- is being removed from a more positive ion.

2nd Period	Li	Be	В	С	N	0	F	Ne
1st	513	899	801	1086	1402	1314	1681	2080
2nd	7298	1757	2427	2352	2856	3388	3374	3952
3rd	11815	14848	3660	4620	4578	5300	6050	6122
3rd Period	Na	Mg	Al	Si	Р	S	CL	Ar
1st	496	738	577	787	1012	1000	1251	1520
2nd	4562	1451	1817	1577	1903	2251	2297	2665
3rd	6912	7732	2745	3231	2912	3361	3826	3928
4th Period	к	Ca	Ga	Ge	As	Se	Br	Kr
1st	419	590	579	762	947	941	1140	1351
2nd	3051	1145	1979	1537	1798	2044	2104	2350
3rd	4411	4910	2963	3302	2735	2974	3500	3565

The First IE increases going across a period and down a group

The atomic radius decreases and the IE increases due to the increase in effective nuclear charge

Trends in Ion Sizes

George W.J. Kenney, Jr.

Page 10 of 12

Positive and negative ions increase in size going down a group

Li atom (radius = 152 pm) Li atom (radius = 152 pm) Li⁺ cation (radius = 78 pm) Li⁺ Li^+ I_{52} pm I_{52} pm I_{52} I_{52} pm I_{52} I_{52} $I_$

When an e- is removed from an atom to form a cation, the size shrinks considerably.

When an e- is added to an atom to form an anion, the size is always larger

Isoelectronic ions have the same number of electrons, but a different number of protons:

Ion	N3-	02-	F-	Na+	Mg^{2+}
# of Electrons	10	10	10	10	10
# of Protons	7	8	9	11	12
Ionic Radius (pm)	146	140	133	98	79

Summary of Periodic Trends			
Moving through the periodic table:	Atomic radii	Ionization Energy	Electron Affinity
Down a group	Increase	Decrease	Becomes less exothermic
Across a Period	Decrease	Increase	Becomes more exothermic

The main group elements form Cations with an electron configuration equivalent to that of the **preceding noble gas**

Nonmetals acquire enough electrons to form an anion with the electron configuration of the **next noble gas.**

Students should read: Milestones in the Development of Chemistry...

Radioactivity: Alpha, Beta, Gamma are separated by passing radiation between electrically charged plages.

Thompsons experiment to measure the electron charge-to-mass ratio

Goldstein's Canal Rays

Rutherfords experiment to determine the structure of an aom – hit a gold foil with + particals, detect with a ZnS screen.

Milikan's Oil Drop experiment to determine the charge on an electron