Chapter 8 Electron Configuration and Periodicity

These Notes are to SUPPLIMENT the Text. They do NOT Replace reading the Text Material. Additional material that is in the Text will be on your tests! To get the most information, READ THE CHAPTER prior to the Lecture, bring in these lecture notes and make comments on these notes. These notes alone are NOT enough to pass any test!

The author is providing these notes as an addition to the students reading the text book and listening to the lecture. Although the author tries to keep errors to a minimum, the student is responsible for correcting any errors in these notes.

8.1 Electron Spin and Pauli Exclusion Principle: A beam of hydrogen atoms is split into 2 by a magnetic field.

Atoms are Magnetic: Stern and Gerlach observed the splitting of a beam of hydrogen atoms by a magnetic field. This shows the atoms are magnetic – the electrons of different atoms spin in opposite directions [M = - 1/2 and + 1/2]

Electron Configuration of an atom is a particular distribution of electrons among available subshells

Orbital Diagrams show how the orbital’s of a subshell are occupied by electrons:

\[
\begin{align*}
\uparrow & \quad \downarrow & \quad \uparrow & \quad 0 & \quad 0 \\
1s & & 2s & & 2p
\end{align*}
\]

\[\uparrow = m_s \text{ (spin)} = + \frac{1}{2} \quad \downarrow = m_s = - \frac{1}{2}\]

Pauli exclusion principle: no two electrons in an atom have the same 4 Quantum Numbers

<table>
<thead>
<tr>
<th>Subshell</th>
<th>#Orbitals</th>
<th>Max # of Electrons</th>
</tr>
</thead>
<tbody>
<tr>
<td>s (l=0)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>p (l=1)</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>d (l=2)</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>f (l=3)</td>
<td>7</td>
<td>14</td>
</tr>
</tbody>
</table>

Example 8.1: Which orbital diagrams are possible

\[
\begin{align*}
1s & & 2s & & 2p \\
\uparrow & \quad \downarrow & & & \\
\uparrow & \quad \downarrow & \quad \uparrow & \quad - & - \\
\uparrow & \quad \downarrow & \quad \uparrow & \quad - & - \\
\uparrow & \quad \downarrow & & & \\
1 \text{ s}^3 & & 2 \text{ s}^1 & & \\
1 \text{ s}^2 & & 2 \text{ s}^1 & & 2 \text{ p}^7 \\
1 \text{ s}^2 & & 2 \text{ s}^2 & & 2 \text{ p}^6 \\
1 \text{ s}^2 & & 2 \text{ s}^2 & & 2 \text{ p}^6 & & 3 \text{ s}^2 & & 3 \text{ p}^6 & & 3 \text{ d}^8 & & 4 \text{ s}^2 \\
\end{align*}
\]

Possible

Impossible

Example 8.1: Which orbital diagrams are possible

\[
\begin{align*}
1s & & 2s & & 2p \\
\uparrow & \quad \downarrow & & & \\
\uparrow & \quad \downarrow & \quad \uparrow & \quad - & - \\
\uparrow & \quad \downarrow & \quad \uparrow & \quad - & - \\
\uparrow & \quad \downarrow & & & \\
1 \text{ s}^3 & & 2 \text{ s}^1 & & \\
1 \text{ s}^2 & & 2 \text{ s}^1 & & 2 \text{ p}^7 \\
1 \text{ s}^2 & & 2 \text{ s}^2 & & 2 \text{ p}^6 \\
1 \text{ s}^2 & & 2 \text{ s}^2 & & 2 \text{ p}^6 & & 3 \text{ s}^2 & & 3 \text{ p}^6 & & 3 \text{ d}^8 & & 4 \text{ s}^2 \\
\end{align*}
\]

Possible
Which orbital diagrams are possible

\[
\begin{align*}
1s & \quad 2s & \quad 2p \\
a. & \quad \uparrow & \quad \uparrow \\
b. & \quad \uparrow & \quad \uparrow & \quad \uparrow \quad \uparrow \quad \uparrow \quad \uparrow \\
c. & \quad \uparrow & \quad \uparrow & \quad \uparrow & \quad \uparrow \\
d. & \quad 1s^2 & \quad 2s^2 & \quad 2p^4 \\
e. & \quad 1s^2 & \quad 2s^4 & \quad 2p^2 \\
f. & \quad 1s^2 & \quad 2s^2 & \quad 2p^6 & \quad 3s^2 & \quad 3p^{10} & \quad 3d^{10}
\end{align*}
\]

Discuss how NMR works!

NMR Spectrum of Ethanol: \(\text{CH}_3\text{-CH}_2\text{-OH} \)

8.2 Build up Principle of the Periodic Table

Ground State: Configuration of the lowest energy level

Excited State: All other configurations

Aufbau Build Up Principle: scheme used to reproduce the electron configuration of the ground state by successively filling subshells with electrons in a specific order. This order represents an increase in energy for different subshells. Different orbitals of a subshell all have the same energy [each of the 3 basic electrons of a p subshell have the same energy].

\[
\begin{align*}
6s & \quad 6p & \quad 6d & \quad 6f \\
5s & \quad 5p & \quad 5d & \quad 5f \\
4s & \quad 4p & \quad 4d & \quad 4f \\
3s & \quad 3p & \quad 3d \\
2s & \quad 2p \\
1s
\end{align*}
\]

NOTE CHANGE OF FILL PATTERN FROM 3p \(\rightarrow \) 4s

Filling a subshell gives a stable configuration

Table 8.2: Do \(Z = 1 \) to 36 of \(Z \) & Configuration, fill all subshells. Note: filling a p subshell is a stable configuration.

Atomic Number = \(z \) = # of protons = # of electrons
Orbital Energies of Scandium, Z=21. Note order 4s > 3d > 3d (??)

Using the Noble Gas Core abbreviations [inner shell configuration is a noble gas]

```
<table>
<thead>
<tr>
<th>Z</th>
<th>2s</th>
<th>2p</th>
<th>3s</th>
<th>3p</th>
<th>4s</th>
<th>4p</th>
<th>5s</th>
<th>5p</th>
<th>6s</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>He</td>
<td>1s²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Li</td>
<td>1s²</td>
<td>2s¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Be</td>
<td>1s²</td>
<td>2s²</td>
<td>2p¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>1s²</td>
<td>2s²</td>
<td>2p²</td>
<td>3s¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fill the 3s subshell
```

<table>
<thead>
<tr>
<th>Z</th>
<th>2s</th>
<th>2p</th>
<th>3s</th>
<th>3p</th>
<th>4s</th>
<th>4p</th>
<th>5s</th>
<th>5p</th>
<th>6s</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>C</td>
<td>1s²</td>
<td>2s²</td>
<td>2p²</td>
<td>3s²</td>
<td>3p²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Ne</td>
<td>1s²</td>
<td>2s²</td>
<td>2p⁶</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fill the 3p subshell

<table>
<thead>
<tr>
<th>Z</th>
<th>2s</th>
<th>2p</th>
<th>3s</th>
<th>3p</th>
<th>4s</th>
<th>4p</th>
<th>5s</th>
<th>5p</th>
<th>6s</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Na</td>
<td>1s²</td>
<td>2s²</td>
<td>2p⁶</td>
<td>3s²</td>
<td>3p¹</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Mg</td>
<td>1s²</td>
<td>2s²</td>
<td>2p⁶</td>
<td>3s²</td>
<td>3p²</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fill the 3d subshell

<table>
<thead>
<tr>
<th>Z</th>
<th>2s</th>
<th>2p</th>
<th>3s</th>
<th>3p</th>
<th>4s</th>
<th>4p</th>
<th>5s</th>
<th>5p</th>
<th>6s</th>
<th>7s</th>
<th>8s</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Al</td>
<td>1s²</td>
<td>2s²</td>
<td>2p⁶</td>
<td>3s²</td>
<td>3p²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Ar</td>
<td>1s²</td>
<td>2s²</td>
<td>2p⁶</td>
<td>3s²</td>
<td>3p⁶</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Noble Gases – Very Unreactive

<table>
<thead>
<tr>
<th>Z</th>
<th>2s</th>
<th>2p</th>
<th>3s</th>
<th>3p</th>
<th>4s</th>
<th>4p</th>
<th>5s</th>
<th>5p</th>
<th>6s</th>
<th>7s</th>
<th>8s</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>He</td>
<td>1s²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Ne</td>
<td>1s²</td>
<td>2s²</td>
<td>2p⁶</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Kr</td>
<td>1s²</td>
<td>2s²</td>
<td>2p⁶</td>
<td>3s²</td>
<td>3p⁶</td>
<td>3d¹⁰</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Group IIA, Alkaline Earth Metals – Moderately reactive, loose 2 electrons

<table>
<thead>
<tr>
<th>Z</th>
<th>2s</th>
<th>2p</th>
<th>3s</th>
<th>3p</th>
<th>4s</th>
<th>4p</th>
<th>5s</th>
<th>5p</th>
<th>6s</th>
<th>7s</th>
<th>8s</th>
<th>9s</th>
<th>10s</th>
<th>11s</th>
<th>12s</th>
<th>13s</th>
<th>14s</th>
<th>15s</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Be</td>
<td>1s²</td>
<td>2s²</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Mg</td>
<td>1s²</td>
<td>2s²</td>
<td>2p⁶</td>
<td>3s²</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Ca</td>
<td>1s²</td>
<td>2s²</td>
<td>2p⁶</td>
<td>3s²</td>
<td>3p⁶</td>
<td>3d¹⁰</td>
<td></td>
</tr>
</tbody>
</table>
Group IIIA,
Z=5 Boron $1s^2 \ 2s^2 \ 2p^1$ \[\text{He} \] $2s^2 \ 3p^1$
Z=13 Aluminum $1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^1$ \[\text{Ne} \] $3s^2 \ 3p^1$
Z=31 Galilium $1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^{10} \ 4s^2 \ 4p^1$ \[\text{Ar} \] $4s^2 \ 4p^1$

Boron and Aluminum have the noble gas cores plus 3 electrons
Gallium has an additional filled 3d subshell.

Pseudo-Noble-Gas core is a noble gas core with \((n-1)d^{10}\) electrons

Valence Electrons: Electrons in an atom outside the Noble-Gas or Pseudo-Noble-Gas core.

Periodic Table with valence-shell electrons. Note groups have similar electron configuration [and properties]

Going Across a Period:

<table>
<thead>
<tr>
<th>Period</th>
<th>Group</th>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IA</td>
<td>H, Li, Na</td>
</tr>
<tr>
<td>2</td>
<td>IIA</td>
<td>Be, Mg, Al</td>
</tr>
<tr>
<td>3</td>
<td>IIIA</td>
<td>Si, P, S</td>
</tr>
<tr>
<td>4</td>
<td>IVA</td>
<td>S, Ar, K</td>
</tr>
<tr>
<td>5</td>
<td>VA</td>
<td>Ca, Sc, Ti</td>
</tr>
<tr>
<td>6</td>
<td>VIA</td>
<td>Ti, V, Cr</td>
</tr>
<tr>
<td>7</td>
<td>VIIA</td>
<td>Cr, Mn, Fe</td>
</tr>
</tbody>
</table>

Transition Metals, d subshell fills

<table>
<thead>
<tr>
<th>Period</th>
<th>Group</th>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IB</td>
<td>Sc, Ti</td>
</tr>
<tr>
<td>2</td>
<td>IIB</td>
<td>V, Cr</td>
</tr>
<tr>
<td>3</td>
<td>IIIIB</td>
<td>Mn, Fe</td>
</tr>
<tr>
<td>4</td>
<td>IVB</td>
<td>Fe, Co</td>
</tr>
<tr>
<td>5</td>
<td>VB</td>
<td>Co, Ni</td>
</tr>
<tr>
<td>6</td>
<td>VIA</td>
<td>Ni, Cu</td>
</tr>
<tr>
<td>7</td>
<td>VIIIB</td>
<td>Cu, Zn</td>
</tr>
</tbody>
</table>

* One electron is promoted from the 4s to the 4d subshell for \(Z = 14\) & \(29\)
Exceptions to the Build up Principle

Cr Z=24 [Ar] 3d⁴ 4s² \(\rightarrow \) 3d⁵ 4s¹
Cu Z=29 [Ar] 3d⁹ 4s² \(\rightarrow \) 3d¹⁰ 4s¹

X-Ray is generated when an electron beam that falls on a metal target. With sufficient energy, the electron knocks an electron from an inner shell giving a metal ion with a missing inner orbital. An electron from a higher orbital drops down and an X-Ray photon is emitted.

Electron configuration from the Periodic Table: 1s 3d 3p

Note: The Principal Quantum Number of the Valence Shell Electron must equal the Period!

Example: 8.2 What is the ground state configuration for Ga Z = 31

\[
\begin{align*}
1s & \quad 2s \quad 2p \quad 3s \quad 3p \quad 4s \quad 3d \quad 4p \\
\text{Then fill} & \quad 4s^2 \quad 3d^{10} \quad 4p^1 \\
\text{Valence Shell is} & \quad 4s^2 \\
\text{ns}^a \quad np^b & \quad n \text{ is the Principle Quantum Number} \\
\text{# of Valence Shell Electrons} & = a + b = 3. \text{ So the Group Number} = 3
\end{align*}
\]

Example: 8.3 What are the outer shell configuration of Te, Z = 52

From the Periodic Table, Te is in Period 5, Group VIA: n = 5, # electrons = 6

\[
5s^2 \quad 5p^4
\]

Exercise 8.3 What is the valence shell configuration of arsenic (As, Z = 33)?

Arsenic is a main group element in Period 4, Group VA, of the periodic table. The five outer electrons should occupy the 4s and 4p subshells 4s² 4p³.

Concept Check 8.2 Two adjacent elements in Period 3. One has only s electrons in it’s valence shell, the other has only 1 p electron. Mg & Al

8.4 Hunds Rule: The lowest energy arrangements of electrons in a subshell is putting the electrons into separate orbital’s of the subshell with the same spin before paring them.

<table>
<thead>
<tr>
<th>1s</th>
<th>1p</th>
<th>2p</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑↑</td>
<td>↑↓</td>
<td>↑↑</td>
</tr>
<tr>
<td>↑↓</td>
<td>↑↑</td>
<td>↑↑</td>
</tr>
<tr>
<td>↑↑</td>
<td>↑↑</td>
<td>↑↑</td>
</tr>
</tbody>
</table>
Table 8.2 Orbital Buildup Diagram

<table>
<thead>
<tr>
<th>Atom</th>
<th>Z</th>
<th>Configuration</th>
<th>1s</th>
<th>2s</th>
<th>2p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen</td>
<td>1</td>
<td>1s<sup>1</sup></td>
<td>↑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helium</td>
<td>2</td>
<td>1s<sup>2</sup></td>
<td>↑↑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithium</td>
<td>3</td>
<td>1s<sup>2</sup>2s<sup>1</sup></td>
<td>↑↑</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td>4</td>
<td>1s<sup>2</sup>2s<sup>2</sup></td>
<td>↑↑</td>
<td>↑↑</td>
<td></td>
</tr>
<tr>
<td>Boron</td>
<td>5</td>
<td>1s<sup>2</sup>2s<sup>2</sup>2p<sup>1</sup></td>
<td>↑↑</td>
<td>↑↑</td>
<td>↑</td>
</tr>
<tr>
<td>Carbon</td>
<td>6</td>
<td>1s<sup>2</sup>2s<sup>2</sup>2p<sup>2</sup></td>
<td>↑↑</td>
<td>↑↑</td>
<td>↑↑</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>7</td>
<td>1s<sup>2</sup>2s<sup>2</sup>2p<sup>3</sup></td>
<td>↑↑</td>
<td>↑↑</td>
<td>↑↑</td>
</tr>
<tr>
<td>Oxygen</td>
<td>8</td>
<td>1s<sup>2</sup>2s<sup>2</sup>2p<sup>4</sup></td>
<td>↑↑</td>
<td>↑↑</td>
<td>↑↑</td>
</tr>
<tr>
<td>Fluorine</td>
<td>9</td>
<td>1s<sup>2</sup>2s<sup>2</sup>2p<sup>5</sup></td>
<td>↑↑</td>
<td>↑↑</td>
<td>↑↑</td>
</tr>
<tr>
<td>Neon</td>
<td>10</td>
<td>1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup></td>
<td>↑↑</td>
<td>↑↑</td>
<td>↑↑</td>
</tr>
</tbody>
</table>

Example 8.4 Iron is 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁶ 4s². Draw the orbitals

\[
\begin{array}{cccccccc}
1s^2 & 2s^2 & 2p^6 & 3s^2 & 3p^6 & 3d^6 & 4s^2 \\
\uparrow\downarrow & \uparrow\downarrow & \uparrow\downarrow & \uparrow\downarrow & \uparrow\downarrow & \uparrow\downarrow & \uparrow\downarrow \\
\end{array}
\]

Build up for Sodium, atomic number 11:

\[
\begin{array}{cccc}
1s & 2s & 2p & 3s \\
\uparrow \downarrow & \uparrow \downarrow & \uparrow \downarrow & \uparrow \\
-1 & 0 & +1 & \\
\end{array}
\]

Build up for Chlorine, atomic number 17:

\[
\begin{array}{cccc}
1s & 2s & 2p & 3s & 3p \\
\uparrow \downarrow & \uparrow \downarrow \\
-1 & 0 & +1 & -1 & 0 & +1 \\
\end{array}
\]

Paramagnetic Substance: a substance that is weakly attracted by a magnetic field and this attraction is generally the result of unpaired electrons.

Diamagnetic Substance: a substance that is not attracted by a magnetic field or is very slightly repelled by such a field. The substance has only paired electrons.

8.5 Mendellev’s Predictions

This section is not normally covered during lectures.
8.6 Some Periodic Properties

The Periodic Law states that when the elements are arranged by atomic number, their physical and chemical properties vary periodically.

Atomic Radius
1
2

Effective Nuclear Charge

Ionization Energy

First Ionization Potential:

Second Ionization Potential:

Electron Affinity

Electron affinity is the energy change for the process of adding an electron to a neutral atom in the gaseous state to form a negative ion.

8.7 Periodicity in the Main Group Elements

Practice Questions:

Review Questions: All Example Problems in the chapter

Concept Questions: 7.19, 7.23, 7.27

Practice Problems: 7.33, 7.35, 7.41
7.43, 7.45, 7.51
7.57, 7.59, 7.61, 7.63
Some examples of discrepancies in the electron fill sequence:

Boron 5
\((\uparrow \downarrow \uparrow \uparrow \uparrow)\)
Hybridizes to this \(sp^3\) e.g. BF\(_3\)

Carbon 6
\((\uparrow \uparrow \uparrow \uparrow)\)
Hybridizes to this \(sp^3\) e.g. CH\(_4\)

Aluminum 13
\((\uparrow \uparrow \uparrow)\)
Hybridizes to this \(sp^3\) e.g. AlCl\(_3\)

Silicon 14
\((\uparrow \uparrow \uparrow)\)
Hybridizes to this \(sp^3\) e.g. SiH\(_4\)

Chromium 24
Goes to this:
\((\uparrow \uparrow \uparrow)\)

Copper 29
Goes to this:
\((\uparrow \uparrow \uparrow)\)

Silver 47
Goes to this:
\((\uparrow \uparrow \uparrow)\)